Using Generating Functions to Solve Linear Inhomogeneous Recurrence Equations
نویسنده
چکیده
This paper looks at the approach of using generating functions to solve linear inhomogeneous recurrence equations with constant coefficients. It will be shown that the generating functions for these recurrence equations are rational functions. By decomposing a generating function into partial fractions, one can derive explicit formula as well as asymptotic estimates for its coefficients. Key–Words: Linear recurrence equations, generating functions, partial fractions decomposition.
منابع مشابه
A Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کاملModified homotopy method to solve non-linear integral equations
In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...
متن کاملArticle SOME PROPERTIES OF A SOLUTION TO A FAMILY OF INHOMOGENEOUS LINEAR ORDINARY DIFFERENTIAL EQUATIONS
In the paper, the authors present an explicit form for a family of inhomogeneous linear ordinary differential equations, find a more significant expression for all derivatives of a function related to the solution to the family of inhomogeneous linear ordinary differential equations in terms of the Lerch transcendent, establish an explicit formula for computing all derivatives of the solution t...
متن کاملBivariate generating functions for a class of linear recurrences: General structure
We consider Problem 6.94 posed in the book Concrete Mathematics by Graham, Knuth, and Patashnik, and solve it by using bivariate exponential generating functions. The family of recurrence relations considered in the problem contains many cases of combinatorial interest for particular choices of the six parameters that define it. We give a complete classification of the partial differential equa...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کامل